
Space Radiation and Plasma Effects: Summary

 Linking between space environment and impact (satellites and aviation)

Mission Concept/Planning/Design Mission Launch

Mission Operations Anomaly Resolution

Space Radiation and Plasma Effects Working Group co-leads

Decided to focus on space environment models that are relevant to these effects

- Surface charging (J. Minow, N. Ganushkina, D. Pitchford)
- Internal Charging (P. O'Brien, Y. Shprits)
- Single Event Effects (M. Xapsos, P. Jiggens, J. Mazur)
- Radiation at aviation altitudes (K. Tobiska, M. Meier)
- Total Dose in solar array and electronics due to SPEs and electron enhancements (I. Jun, M. Xapsos, T. Guild)

Space Radiation and Plasma Effects: Summary

- Physical quantities (details see next slide) for both science community and user community identified (can be easily translatable for impact assessment), proceeds with model validation efforts
- Different Metrics will be explored including the traditional ones and some new ones
 - Terrestrial model evaluation tools (e.g. Tara Jensen)
 - e.g., the median symmetric accuracy and the symmetric signed percentage bias using log ratio (Morley et al., 2018)
 - Threshold based metrics
- Surface charging validation ongoing (Vania's presentation)
- Internal charging planning/event selection
- Radiation effects at aviation altitudes ongoing
- Single Event Effects: will validate rigidity cutoff models using GPS and other data (Paul and Kent's presentation)
- Total Dose: electric orbit raising (~6 months duration, O3b)
- ~5-6 papers to be submitted to Space Weather Special Issue

Quantities to be Used for Validation

Impacts	Effect Metric	Science Predictands	Time Period (Space Weather)
Surface Charging	>10 keV e- flux	>10 keV e- flux; Te; Ne	seconds
Internal Charging	>100 fA/cm ² [100 mils]	1 MeV and > 2 MeV e- flux	24-hour, 72hr averaged
Single Event Effects	SEE rate [100 mils]	>30 MeV p+ flux; >15 MeV.cm ² .mg ⁻¹ LET flux	5-min, daily, weekly (worst)
Total Dose	Dose in Silicon[100 mils; 4 mils]	30-50 MeV p+ flux; >1.5 MeV e- flux 1-10 MeV p+	Daily, weekly, yearly
Aviation	Dose rate in aircraft (D-index)	2 spectral parameters (power law with rigidity)	5-min, Hourly

1 mil= 1 thousandth of an inch = 0.001 inch [100 mils]: behind a 100 mils aluminum shielding

Papers for the special issue

- 1. O'Brien, T. P., et al: Using satellite anomalies to inform space weather sensor and model performance evaluations.
- 2. Zheng, Y., et al., Radiation and Plasma effects on space assets: metrics for tracking space weather environment performance
- 3. Yu, Y., V. K. Jordanova, et al., Initial results from the GEM challenge on the spacecraft surface charging environment
- 4. Tobiska et al., Analytical Representations for Characterizing the Global Aviation Radiation Environment based on Model and Measurement Databases, submitted
- 5. Ganjushkina, N. et al., IMPTAM model validation efforts and results (approximate)
- 6. Meier, M. et al., Calculating radiation exposure at aviation altitudes using PANDOCA (approximate)

Possible:

Jun, I., et al., The Current Status of Space Weather Products and Implications for Spacecraft Design: Total Ionizing Dose Point of View